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ABSTRACT
Background: The development of learner models in learning 
management systems is among the most significant steps in 
designing personalized e-learning environments. The primary 
purpose of this modeling is to extract user characteristics in order to 
personalize the learning process based on learners’ needs, learning 
style, personality, and individual circumstances. 
Methods: The present study provides a review of published 
literature over the past 20 years in academic databases including 
IEEE, Sciencedirect, Wiley, and Springer. The search was limited 
to the studies on the personalization of e-learning environments 
based on learner characteristics, specifically the ones providing a 
reliable method for integrating these characteristics, as appropriate 
input variables, in the design of personalized e-learning systems. 
Results: This study proposed a new method of classifying the 
learner characteristics as the variables for designing a personalized 
e-learning system. A total of 111 papers were considered for analysis. 
In the end, 22 influential learner characteristics were extracted and 
classified into six subcategories, namely cognitive, motivational, 
behavioral, emotional, metacognitive aspects, and combined 
domains. The proposed classification method was also compared 
with available related categorizations to demonstrate this method’s 
advantage in designing a personalized e-learning environment. 
Conclusion: The findings represent the learning criteria that can be 
utilized in designing adaptive learning systems. Moreover, it can 
also aid other researchers in this field to achieve a better perspective 
in learner modeling. Applying these characteristics as input design 
variables in personalized e-learning systems can result in a better 
solution for personalization.
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Introduction
New e-learning solutions are intended 

to provide personalized and adaptive 
environments to address the learners’ needs. 
Personalization of learning is in contradiction 
to the strategy of prescribing a single method 
for all learners. Today, learners are inclined 
to have their own learning experience in line 
with their personal needs, learning speed, 
interests, and particularly their own learning 
approach. They desire to peruse knowledge 
on their own terms and in their own preferred 
methods (1). In a personalized e-learning 
environment, the learning content is designed 
in consistence with the learner’s individual 
requirements and learning style (2). Exploring 
learners’ individual characteristics in the 
learning process can positively affect the their 
performance and increase their understanding 
and learning ability (3).

Improvement through personalized 
environments is a generally recognized 
practice (4). One of the personalized learning 
subcategories is adaptive learning. In addition 
to customizing the educational path based 
on individual characteristics (5), adaptive 
learning systems utilize the learners’ data 
throughout a course in order to adjust the 
educational path and content of education in 
accordance with the complexity of educational 
resources and even the knowledge transfer 
methods (6).

Personalized learning systems are 
comprised of three major components: the 
“learner’s model,” “learning domain,” and 
“educational model,” or “adaptation engine” 
(7, 8). Each learner has different personal 
learning characteristics. In a personalized 
learning environment, learners’ needs must 
be individually identified. This process 
is complicated and challenging given the 
individual characteristics of each learner 
(9). On the other hand, there are numerous 
personality traits that contribute to the 
learner’s understanding and knowledge (10). 
To address this challenge in personalized 
learning systems, learners’ prominent features 
are identified and modeled. Modeling is a 
quantitative representation of the learner using 

the Intelligent Educational System. In this 
regard, if the model is effectively designed, it 
can support the e-learning system to provide 
adaptive and personalized learning (11). 

Each learning model combines various 
components of the learner’s individual 
characteristics in different learning 
domains (12). The learning domains are 
the classifications of learners’ individual 
characteristics based on the existing 
relationships among the elements of these 
characteristics, namely cognitive, non-
cognitive, behavioral and emotional features, 
among others. The educational model is the 
strategy for the delivery of personal training 
in educational systems, which defines the 
required materials to adapt and the right 
adaptation time and procedure (8). 

Based on the parameters in the learner 
model, an educational model is generated 
to personalize the interaction between 
the learner and the environment. In other 
words, to generate a learner model, one 
should identify and collect the learner’s 
information. Furthermore, adaptive training 
can be delivered by means of updating and 
using the collected information (13, 14). 

The present study provides a systematic 
literature review of the personal characteristics 
affecting personalization. Additionally, it aims 
to find the most commonly used methods for 
identifying the features contributing to a new 
learning classification, which have not been 
thoroughly studied to date. 

Methods
This was a systematic literature review 

investigating the learner characteristics for 
a student model in e-learning environments. 
This review was conducted through a 
comprehensive investigation of various 
electronic databases, using selected 
keywords related to the fundamental research 
objectives. 

This research method includes three 
primary stages. The first stage concerns 
defining the research objective. The second 
stage is a systematic literature review 
conducted by searching for and selecting 
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the relevant studies and articles. The final 
stage entails combining and analyzing the 
data extracted from the selected papers. The 
results of this analysis are presented in the 
following section, which concentrates on 
providing the conclusion, controlling quality, 
and the study’s findings.

Aims
In this research, identifying the goals 

related to the literature review of learners' 
characteristics in personalized e-learning 
environments is first performed by recognition 
of those characteristics. This study pursues 
three primary objectives:

1- Identifying the most commonly noted 
learner characteristics in learner modeling 
process

2- Implementing an appropriate domain 

categorization of these characteristics 
3- Identifying the method of utilizing these 

characteristics in learner modeling process in 
various studies. 

Search Strategies
Initially, a few basic examinations were 

carried out to identify and select general 
and significant information regarding the 
related keywords and criteria. The utilized 
search string was as follows: (“Personalized” 
OR “Personalization” OR “Adaptive” 
OR “Adaptable”) AND (“learning” OR 
“e-learning” OR “instructions” OR 
“education” OR “tutoring” OR “Intelligence 
tutoring system (ITS)” OR “Learning 
management system (LMS)”).

Additionally, another search string was 
used for each domain to search for relevant 

Table 1. The keywords searched in the proposed domain and individual characteristics of each of them
Researchers 
Studied

Keywords in searchIndividual CharacteristicDomain 

(15-19)(“User model” OR “Student model” 
OR “Learner model” OR “Educational 
model”) AND (“Cognitive” OR 
“Learning style” OR “Learning type” 
OR “Cognitive style” OR “Cognitive 
type” OR “Prior knowledge” 
OR “Background knowledge” or 
“Capacity and working memory” OR 
“Personality” OR “Age” OR “Gender” 
OR “Verbal ability” OR “Writing 
ability” OR “Spatial ability”)

Learning styleCognitive
(9, 20-23) Cognitive style
(24-62)Capacity and working 

memory
(21, 27-30)Personality
(31-34)Prior or background 

knowledge
(35-37)Age
(38, 39)Gender
(40, 41)Verbal, writing, and spatial 

ability
(42-45)(“User model” OR “Student model” 

OR “Learner model” OR “Educational 
model”) AND (“Metacognitive”)

self-care, self-assessment, 
self-regulation, self-
awareness, self-explanation, 
self-monitoring, self-learning 
and self-management

Metacognitive

(46-50)(“User model” OR “Student model” 
OR “Learner model” OR “Educational 
model”) AND (“Positive and Negative 
Emotion” OR “Psychomotor” OR 
“Affective”)

Positive and negative 
emotions 

Emotional

(51-53)(“User model” OR “Student model” 
OR “Learner model” OR “Educational 
model”) AND (“Behavioural”)

Learner’s different behaviors 
during learning

Behavioral 

(54-58)(“User model” OR “Student model” 
OR “Learner model” OR “Educational 
model”) AND 
(”Motivational” OR “Motivation” OR 
“Expectations” OR “Goals” OR “Self-
efficacy” OR “learning preferences”)

MotivationMotivational
(59-61)Goals
(62-65)Self-efficacy
(66)Expectations
(67-69)Preferences
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articles in that domain based on learner 
characteristics. These keywords are presented 
in Table 1. For instance, for the cognitive 
domain, the used search string was: (“User 
model” OR “Student model” OR “Learner 
model” OR ”Educational model”) AND 
(“Cognitive” OR “Learning style” OR 
“Learning type” OR “Cognitive style” OR 
”Cognitive type” OR “Prior knowledge” OR 
“Background knowledge” or “Capacity and 
working memory” OR ”Personality” OR 
“Age” OR “Gender” OR “Verbal ability” OR 
“Writing ability” OR “Spatial ability”) . 

Inclusion Criteria
This study attempts to investigate 

student characteristics in a learner model. 
In this regard, the studies that cover each 
characteristic in a learner’s personality 
are included. Therefore, the following 
specifications are considered in the selection 
process. The studies are written in English 
and Persian language. Their full texts can 
be accessed, have addressed components of 
learner model and have been published in 
journals, conferences, technical reports, and 
books of academic databases.

Selection Process
The above mentioned keywords were 

searched in different online databases to 
find relevant publications. Different academic 
databases such as IEEE, Science Direct, 
Springer, and Wiley were explored for that 
purpose. Using this method, 243 articles were 
selected.

Some specific criteria were considered for 
selecting the related articles in the screening 
process. Moreover, the research articles that 
focus on students’ characteristics as variables 
of personalized e-learning environment 
design in learner modeling were included. 

In this stage, 132 articles were excluded 
due to irrelevance to student modeling 
in designing a personalized or adaptive 
e-learning environment. 

Ultimately, based on the designated 
criteria, the related articles were selected from 
those published in English and accessible 

in full text. Among them, 56 articles were 
chosen for qualitative synthesis. The other 55 
were excluded due to analyzing the student 
criteria similar to the selected articles of their 
research (Figure 1).

Data Extraction
All related articles with selected keywords 

were evaluated based on the selected criteria, 
and appropriate related articles have been 
selected. The collected studies were used 
to extract different characteristics for the 
learner’s model. The extracted characteristics 
were categorized in various personality 
domains according to the proposed 
classification method of this study.

In each domain, each article’s main idea 
and the proposed method are summarized 
and investigated to obtain the most important 
characteristic for the learner’s model. 
Furthermore, the proposed method of each 
study for extracting these characteristics was 
also considered. 

As a result of the database search, 111 
reference studies were utilized. These 
publications were classified based on these 
categories: personality domain of used 
characteristic in modeling learner, utilized 
characteristic, publication date, and author(s). 
Table 1 represents all the reference studies that 
have been summarized in the present paper.

The numbers of summarized papers in 
each characteristic are demonstrated in 

Figure 1. The diagram of research stages
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Figure 2.

Results
Humans have individual and different 

characteristics. These differences are 
observed in a person’s interaction with 
his/her surroundings in different aspects. 
In the case of investigating the individual 
differences in educational areas, not only 
do these characteristics not diminish but 
also new classes of characteristics that are 
associated with the learning process emerge, 
such as learning styles, cognitive styles, and 
metacognitive abilities (10).

Several characteristics about learning 
features have been investigated in previous 
studies (8, 10, 14, 21, 71-114). These 
characteristics have been used to design 
a personalized learning environment and 
be categorized into six different primary 
categories. 

The proposed categorization for the 
learning domain includes five primary 
categories of “Cognitive characteristics,” 
“Motivational characteristics,” “Behavioral 
characteristics,” “Emotional characteristics,” 
and “Metacognitive characteristics.” 
Moreover, there are also several characteristics 
resulting from combinations that are called 

“Combined characteristics.” Each learner has 
a set of these features.

A. Cognitive characteristics refer to brain-
based processes. These are the processes that 
control and regulate our behaviors and include 
characteristics like learning style, cognitive 
style, prior or background knowledge, 
capacity and working memory, personality, 
age, gender, verbal ability, writing ability, and 
spatial ability.

B. Metacognitive characteristics could 
be summarized as knowledge of knowledge 
itself. In other words, the ability to know and 
regulate an individual’s thinking process and 
the encompassments of conscious control 
of cognitive processes such as memory, 
attention, and understanding. It includes self-
care, self-assessment, self-regulation, self-
awareness, self-explanation, self-monitoring, 
self-learning, and self-management.

C. Emotional characteristics correspond 
to an individual’s emotions. They include 
positive emotions such as excitement, 
engagement, pleasure, challenge, hope, 
satisfaction, relief, pride, negative emotions 
such as disappointment, fatigue, confusion, 
shame, despair, anxiety and anger, and the 
victory of the lesson’s discoveries.

D. Behavioral characteristics are based on 

Figure 2. Number of summarized papers concerning each characteristic
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the behavior of an individual. These include 
learner behaviors during the learning process, 
such as spending time on learning, quizzes 
scores or proactive behavior, incompatibility, 
learner control, requiring help and feedback, 
work effort (such as practice and scores), 
focus, ability to function in crisis, stress and 
other similar characteristics.

E. Motivational characteristics are related 
to one’s motivation. This notion involves the 
process that initiates, guides, and continues 
toward goal-oriented behaviors. It causes an 
individual to act and includes motivation, 
expectations, goals, self-efficacy, and learning 
preferences. 

F. Combined characteristics also include a 
combination of characteristics involving more 
than two learning categories.

In the following, each of the characteristics 
categories and their inter-relations is 
introduced (Figure 3).

Cognitive Domain
This category includes characteristics 

related to the learner’s established profile, 
such as learning style, cognitive style, 
prior or background knowledge, capacity 
and working memory, personality, age, 
gender, verbal ability, writing ability, and 
spatial ability. They are usually cannot be 
observed directly; moreover, they cannot 
be conveniently measured. However, they 
positively contribute to system performance 

improvement. Another feature of these 
characteristics is their relative stability during 
the learning process. According to references 
(10) and (70), cognitive characteristics are 
most popular in personalized e-learning 
systems. In the following, each of the 
cognitive category characteristics is briefly 
described, and the corresponding researches 
are provided. 

Learning Style
One of the most important learning 

cognitive characteristics is learning style. 
This characteristic is the most popular 
individual learning feature for personalized 
learning researchers (1, 10, 70, 74). Learning 
style is not represented by a precise and 
specific definition; nevertheless, it refers to 
some kind of learner-specific personality, 
such as the power, willingness, and ability 
to process information in learning (74), 
and in the preferred approach for learners 
to learn. Researchers define learning styles 
as: “to describe attitudes and behaviors that 
determine the preferred method of learning 
individually.” For example, some learners 
prefer to learn by a picture. In contrast, text-
study learners may learn by reading a text. 
Some learners choose to start collaborative 
learning with colleagues rather than learning 
individually (1).

The three most famous identification 
theories for the learning style are Felder & 
Silverman (75), Honey & Mumford’s (76), 
and Kolb (77), each of which describes and 
identifies the learning style of the learner. 
Most researchers have applied the Feld-
Silverman model to identify learning styles 
(1, 74, 78-80). After the Folder and Silverman 
model, Honey and Mumford, and Kleeb’s 
model are most considered in papers. Other 
methods for identifying learning styles such 
as Wark and other techniques have been less 
regarded by researchers of this field (1).

Traditionally, learning styles are measured 
using surveys and questionnaires that can 
be long and tedious for the corresponding 
audience; moreover, the updating process 
would be burdensome in these cases. On 

Figure 3. Suggested learning domains
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the other hand, e-learning systems enable 
researchers to diagnose and analyze 
learner’s learning styles through their online 
behaviors by examining the audiences’ 
operational data (81, 82). Some researchers 
exploit an online forum, the spent time on 
quizzes, performance in quizzes, number of 
false questions or number of interactions, 
raised questions, the attendance duration 
in the system, and the number of requested 
guidance as indicators for identifying 
learning styles (15). Chen (83) presented an 
enhanced recommendation method named 
Adaptive Recommendation based on Online 
Learning Style (AROLS), which implements 
learning resource adaptation by Algorithms 
of mining learners’ behavioral data that are 
used to identify learning styles from learner 
behavior include Bayesian networks (82), 
artificial neural networks (84), Decision tree 
(85), rules-based methods (86). In the studies 
(1) and (74), it has been stated that most of 
the identified methods among the intelligent 
techniques of learning algorithms are based 
on rules. 

 Cognitive Style
The cognitive style includes the 

established features of individuals regarding 
obtaining, processing, and organizing 
information. It is commonly recognized 
as the learner’s thinking style. Cognitive 
style is an individual’s common approach to 
solving a problem, which includes the way 
of thinking, attitude, and comprehension of 
the learner, and the main building blocks 
related to general patterns of information 
processing (10, 87). After the learning 
style, the cognitive style is the second most 
interesting characteristic of the individuals 
in the education personalization field (70). 
Some of the most well-known learner’s 
cognitive styles are “field independent” or 
“field-dependent” (88, 89), “analytical” or 
“global” (90) and “verbal” or “Imagery” 
(91). In general, independent field learners 
are “analytical”, and dependent field learners 
are “global” (92). Learning differences in 
cognitive styles lead to different strategies of 

educational methods presentations. In many 
studies, cognitive style is selected as one of 
the most influential variables in the design 
of intelligent tutoring and adaptive systems 
(9, 20-23). 

Capacity and Working Memory
A certain amount of information that the 

learner can obtain, process, maintain, and 
retrieve depends on the amount of working 
memory, prompt learning ability, and 
understanding the concepts, logical thinking, 
and reasoning of the learner’s IQ. Working 
memory plays a significant role in supporting 
learning since learners must store information 
in their minds during the learning process. 
Lusk describes the working memory as an 
individual characteristic that includes the 
simultaneous processing of a task, storing the 
related information in memory, and retrieving 
information from long-term memory 
(93). In some studies (24-26), the effect of 
working memory capacity and learner IQ on 
personalized and comparative learning have 
been examined.

Personality
The human personality is a set of logical 

attributes such as the way of thinking, 
feeling, and excitement. Philip and Gerald 
define personality as characteristics of 
behavior, cognition, and emotional patterns; 
moreover, they recognize it as one of the 
environmental and biological factors (94). 
Generally, personality traits are stable 
and described as individual differences 
in behavioral, cognitive, and emotional 
patterns. Environmental, biological, and 
individual changes and interactions between 
individuals cause personality traits’ stability 
in adulthood; thus, these characteristics 
can rarely change (95). This feature affects 
a learner’s choosing method in selecting 
the content of preferential learning and 
learning approaches such as information 
gathering and communication with others. 
Additionally, it affects study behavior and 
learner’s activity and performance (96). In 
this context, there are two known models 
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for understanding personality. Five-factor 
model (97) and Myers-Briggs Type Indicator 
model (MBTI) (98). These two models can 
cover the behavioral characteristics of the 
learner’s personality and are recommended 
for utilization in network learning (99). In 
the five-factor model, individual personality 
differences are determined in five dimensions: 

1. Neuroticism 
2. Extraversion 
3. Openness 
4. Agreeableness 
5. Conscientiousness (100). 

In the MBTI model, individuals have four 
personality dimensions: 

1. Extraversion / Introversion 
2. Sensing / Intuition 
3. Thinking / Feeling 
4. Judging / Perceiving. 
Traditionally, the learner’s personality was 

explicitly extracted through a questionnaire. 
In some researches, analysis of learner’s 
network behavior has been regarded to extract 
the learner’s personality (21, 28). According to 
reference (70), Personality traits are the third 
most important characteristic in e-learning 
researches (70). 

Prior Knowledge
Another characteristic of the individual 

learner is prior knowledge. If the learner 
understands a particular subject, he also 
perceives the prerequisite; conversely, the 
weakness in learning a subject indicates a 
learning weakness in its prerequisite (71). In 
evaluating quizzes, solving lesson exercises, 
predicting the problem-solving method, 
understanding a subject’s importance, and the 
superior and more prompt learning indicate 
the learner’s greater prior knowledge. 

Age
Learner age can directly influence other 

learner characteristics such as motivation, 
IQ ability, verbal abilities, writing ability, 
spatial mapping, emotional, behavioral, or 
motivational features. According to Nakic 
and Granic, learners’ age effects are usually 
concerned with their previous experience 

and knowledge (10). Kabassi and Virvou 
have also considered an adaptive tutoring 
approach based on the level of knowledge, 
age, habits, and problems for adult learners 
(101). In a study by Kallinen and Ravaja, 
various parameters have been investigated, 
including age, gender, level of education, 
level of computer user experience on the 
evaluation of understanding, importance, 
passion, and interest in the news. Moreover, 
the brain and facial muscles’ activity through 
specific electrodes have been examined (36).

Gender
It cannot be stated that a particular 

gender is superior in terms of learning. The 
brain structure of some people, apart from 
their gender, is more effective. Genetic, 
environmental, and cultural differences, 
developmental and structural differences, 
differences in learning styles, and different 
hormones of men and women indicate the 
impact of gender in learning that can be 
important in designing e-learning systems. 
Some researchers, such as Munoz-Organero, 
do not consider gender an effective parameter 
in the learning process (102). In the research 
of Nakic and Granic, gender corresponds to 
learning behavior, motivation, and the result 
of learning (10). In a study by Shabani, 
which is conducted among 132 foreign 
language learners, different dimensions 
of learning styles based on the learners’ 
genders are investigated. This study’s results 
represent similarities and differences in the 
learning styles preferred by male and female 
participants (38). In another research by 
Noguti, gender differences of incentives have 
been investigated in using social networks. 
The research has presented that female users 
utilize social networks more than male users 
to search the corresponding information 
of studying and learning new contents and 
discuss the products (39). 

Verbal, Writing, and Spatial Ability
Other characteristics of the learner are 

verbal, writing, and spatial abilities. Verbal 
ability is the learner’s talent in communicating 
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with the teacher and other learners through 
talking. A person with superior verbal can 
ask questions from the instructor and solve 
his/her ambiguities more conveniently. In the 
research of Patterson et al., the verbal ability 
impression on learning has been studied. In 
this research, it has been demonstrated that 
learners with weak verbal ability are more 
comfortable in using a knowledge map than a 
text in learning. Knowledge maps have a more 
effective impact on text-based learning for 
learners with weak verbal ability (Patterson 
et al., 2003). Therefore, in e-learning systems, 
it is possible to assess the level of a learner’s 
verbal ability through an adaptive way to 
increase learning efficiency. In a study by 
Nakic and Granic, the verbal ability was also 
considered as one of the learner’s individual 
characteristics (10). However, this feature is 
less considered in other researches. 

Writing talent is defined as the ability 
to write and take notes through the 
learning process. This ability can also be 
advantageous in learning and summarizing 
writing exercises and responding to quizzes. 
The writing ability in e-learning systems 
can be significantly useful in textual context 
environments due to limited required verbal 
communication in communicating with the 
instructor and other learners. In the research 
of Alepis & Virvou, it has been suggested 
that angry people have numerous mistakes 
in writing words, and people tend to express 
feelings when they feel negative (35). Writing 
ability is rarely regarded as an interesting 
parameter to be considered by scholars.

Spatial ability is considered the potential 
to draw and imagine three-dimensional 
spaces in the learning process and multimedia 
content. This ability dramatically contributes 
to learning, especially the fields that require 
spatial visualization, such as practical lessons. 
Learners with low spatial ability can be 
significantly supported by animation instead 
of non-visualization or using 3D images 
rather than using two-dimensional images 
in the learning process (103). Multimedia, 
animation, and three-dimensional images 
play a crucial role in spatial learning. The 

critical point to note is that this ability is 
considered more than writing and verbal 
ability by e-learning researchers. In the 
research of Xiao et al., an adaptive training 
system is presented for teaching visual-spatial 
skills (41). In another study, Van Nuland & 
Rogers reviewed spatial visualization’s effect 
on learning medical lessons (40). 

Metacognitive Domain
Human contemplation regarding his/her 

mental processes and thinking about thinking 
is called metacognition. It includes knowledge 
of time and utilization procedure of specific 
strategies in learning or problem solving (104). 
Cognitive knowledge and cognitive regulation 
are two main meta-cognitive components. 
Metacognitive knowledge is the learner’s 
information about him/her-self and the method 
that the individual gets to benefit from it. In 
a study by Flavell, metacognitive knowledge 
was considered as the storehouse of personal 
knowledge of self-knowledge, tasks, goals, 
activities, and experiences. It was divided 
into person knowledge, task knowledge, and 
condition knowledge (105). Hadwin defines 
metacognitive knowledge as something that 
the learner knows and believes in him/her-self. 
His/her describing method of the task and his/
her strategy in completing a work (106). 

The metacognitive regulation consists 
of the learner’s individual method and the 
learner’s utilization method of metacognitive 
knowledge to change mental processes and 
arrange them to control learning (107). 
Metacognitive regulation includes planning, 
monitoring, and evaluation (108). One of 
the most efficient approaches for improving 
e-learning is enhancing the learner’s 
individual metacognitive characteristics. 
These features include individual self-
care, self-assessment, self-regulation, self-
awareness, self-explanation, self-monitoring, 
self-learning, and self-management. 

Emotional Domain
The emotional characteristics are 

described as the changes in the learner’s 
interest, feelings, morale, and attitudes during 
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the learning process. These characteristics 
can be controlled and appropriately trained 
through five stages of receiving, responding, 
valuing, organization, and internalizing (109). 
Psychological researches have illustrated 
that positive emotions are associated with 
increased creativity, cognitive flexibility, 
efficiency and professional satisfaction, access 
to communication skills, and negotiation. 
Feeling disorganization, ineffectiveness, 
and self-defense may also activate negative 
feelings such as avoidance, retreat, denial, and 
aggression (110). Thus, emotions directly affect 
learning performance (50). Therefore, the 
purpose of the emotional state measurement 
is to control the emotional state of the learner. 
In traditional classes, this is one of the 
teacher’s responsibilities. In the e-learning 
environment, the intelligent tutoring system 
engine is responsible for identifying and 
controlling the learners’ emotions.

For instance, the system can display a 
decent message and create modifications 
in the training process by identifying a 
learner’s fatigue sensation. In a conducted 
study by Woolf et al., Hardware and software 
methods have been utilized to identify 
learners’ emotions (46). In another study by 
D’Mello et al., learner’s fatigue measure has 
been identified using eye movements (47). 
In Fatahi’s research, the learner is modeled 
based on the individual characteristics 
of personality and emotion (48). Another 
research has been proposed to persuade the 
learner to continue listening by using learner’s 
affective behavior (49). In Chen and Sun’s 
study, various multimedia impressions on 
the learner’s emotions and visual and verbal 
performance have been investigated (50). 

Behavioral Domain
The learning process is related to human 

behavior type. The so-called “learning 
theory” is often associated with a behavioral 
perspective. The behavioral approach 
focuses on identifying the impression of 
the environment on the learner’s apparent 
behavior. In this view, it is assumed that the 
mind is a black box that cannot be observed. 

The only approach for understanding an 
individual’s mind procedures is through 
observing his/her apparent behavior (111). 
Face-to-face communication between learner 
and instructor enables the instructor to 
identify the learner’s problems and improve 
the learning process through corrections 
(112). Instead, in e-learning systems, a 
learner’s behavior can be identified from his/
her network behaviors, interaction with the 
system and other users, or questionnaires. 
These can be used to personalize the system. 
The learner’s behavior can be exploited in 
three steps of “collecting and recording 
interactions,” “selection of attributes,” 
and “analysis.” “Collecting and recording 
interactions” includes collecting learner 
interactions with the system, which can be 
stored for later processing. “Selection of 
attributes” involves selecting a part of the 
training system design that provides useful 
information about the learner. In the “analysis” 
phase, the collected information is processed 
and compared with the previously described 
behavioral patterns. Moreover, it adapts the 
system to the learner’s characteristics (21). 
The behavioral characteristics in e-learning 
systems are considered influential variables 
in other user attributes. 

Motivational Domain
Learning efficiency is a critical factor 

that can be influenced by the learner’s 
motivational characteristics, along with the 
instructional methods. The motivational 
feature aims to provide learning opportunities 
by creating passion, excitement, and learning 
motivation in learners. Learner’s engagement 
characteristics include motivation, 
expectations, goals, self-efficacy, and learner’s 
learning preferences. In the following, each 
of these characteristics is explained.

Motivation
Motivation can be defined as a measure of 

continuous efforts toward achieving a goal. 
In other words, learning motivation is the 
amount of continuous effort that the learner 
makes toward learning (58). Motivational 
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learning is a prerequisite for deep processing 
of learning content and stable maintenance 
functions. Furthermore, it is a foundation for 
the enjoyment of learning and durable interest 
(54). This feature is not an intrinsic and constant 
element. Thus, it may improve over time, 
especially in providing appropriate teaching 
strategies and learning environments for the 
learner (60). Motivation consists of two parts: 
intrinsic motivation and extrinsic motivation. 
It includes being curious, challenging, 
and willing during the learning process in 
people with intrinsic motivation. It includes 
acquiring a satisfactory score in people with 
extrinsic motivation, competing with others, 
and attempting to obtain a badge for the goal 
(21). Motivation is an influential factor in 
e-learning (113). The factors of “individual 
attitude and expectations,” “transparent 
orientation,” “recognition and reward,” along 
with a comfortable learning environment, can 
increase the motivation for e-learning (58). 

Goals
The learner’s goals include the 

intention and motivation toward learning. 
“Orientation” is the most common feature 
of learning goals. “The theory of goal 
orientation” discusses the impression of 
goals on learning performance. Orientation 
is defined as a set of intrinsic behaviors that 
determine learners’ selected approaches and 
their learning encouragement method. The 
goal orientation can be described as a set of 
learners’ beliefs that illustrate their goals and 
explains the significance of their goals.

The goal orientation includes learning 
goals and performance goals. The learning 
goals are the subjects that the learner seeks 
to master. The performance goals are the 
other individuals’ perspectives regarding the 
learner’s performance (21). The orientation of 
the learning and performance goals represents 
two different perceptions of success and 
denotes different goals for participating in 
the learning process.

Self-efficacy
Bandura defines self-efficacy as a deep 

belief in organization and implementation of 
necessary actions in the upcoming situations. 
In this regard, Bandura considers four primary 
sources for self-efficacy: mastery experiences, 
vicarious experiences, verbal persuasion, 
and physiological and affective reactions. 
According to Bandura, the most important 
method to gain a strong sense of self-efficiency 
is to see successful “mastery Experiences.” 
By observing the “successful experiences of 
others” in fulfilling the tasks and efforts, one 
can gain belief in his/her ability to succeed. 
Through “verbal persuasion,” the individual 
is convinced that he/she has the required skills 
and abilities to succeed.

Additionally, “physiological and affective 
reactions” in various situations can affect the 
person’s sense of efficiency in a particular 
situation. People with high self-efficacy see 
the problems and challenging issues as a 
procedure for gaining skills. These people 
have a passion for activities participation 
and represent an outstanding commitment 
and responsibility. Failures will not be a 
hindrance to them. In contrast, individuals 
with low self-efficacy avoid challenging tasks 
and consider the accomplishment of arduous 
tasks beyond their abilities. They are severely 
affected by their failures and suffer from a 
lack of self-confidence.

Self-efficacy significantly contributes to 
the learner’s motivation and the effectiveness 
of learning. Furthermore, it increases the 
learner’s self-esteem and plays a significant 
role in achieving learning goals. In online 
learning environments, the learner’s sense of 
efficiency and success can be provoked. His/
her self-esteem can be increased by providing 
straightforward initial content to determine 
the learner’s ability and then complicate it.

Expectations
The expectation is defined as a momentary 

belief in the probability of realizing a 
particular action that results in a particular 
outcome. It must be considered that the 
expectation attribute consists of the prediction 
and the probability of performing a behavior. 
Simultaneously, the self-efficacy feature is 
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the individual’s confidence in a behavior 
conduction’s ability (114). Additionally, 
effective expectations aid the learner in 
trusting his/her abilities and performing 
accordingly to achieve the desired results. 
The learner’s expectations are consistently 
influenced by the individual’s attitude toward 
e-learning and make a long impression on the 
learning process (66). 

Learning Preferences
One of the characteristics that have 

been investigated to a lesser extent by the 
researchers is learner preferences. Learning 
preferences mean considering the learner’s 
opinion and attitude in the learning process to 
enhance and facilitate the quality of teaching 
services. The learning process’s quality is not 
supposed to be delivered by the instructor 
to the learner; however, it is the process of 
collaboration between the learner and the 
learning environment. This means that the 
“product/result of the learning process” is not 
merely a result of the production process at 
the educational institution; nevertheless, it 
also relies on the empowerment and activation 
of the learner (67). In e-learning systems, the 
learners’ preferences in cookies or databases, 
can be stored and used by considering their 
previous opinions and beliefs, along with 
using their network behaviors. 

Discussion
Different categorizations of student 

modeling have been previously presented; 
however, a comprehensive model that 
considers a wide range of learner’s 
characteristics in the personalization of the 
learning environment has never been realized 
in the previous studies. 

 One of the most utilized categorizations 
is bloom categorization, which has classified 
learner characteristics into three main 
categories, including “Cognition,” “Affective,” 
and “Psychomotor” (115). As the first 
learning category, cognitive is an information 
processing pattern that uses logical thinking 
to create and acquire a knowledge base 
during the learning process (70). This 

category’s characteristics are usually stable 
and unchangeable. The required duration for 
changing them in individuals occurs in an 
extended period (21). Researchers believe 
that this category consists of learning style, 
cognitive style, prior knowledge, capacity, 
working memory, thinking process, learning 
goals, and goal orientation (8, 14, 21). The 
second category includes the learner’s 
emotional or affective characteristics that 
can be regarded as a positive or negative 
emotional attitude. Positive emotions 
encompass excitement, interaction, pleasure, 
challenge, hope, satisfaction, relief, pride, and 
negative feelings, including despair, fatigue, 
confusion, shame, despair, anxiety, and anger.

Moreover, self-efficacy and the victory of 
explorations typically fall into the emotional 
category (8, 14, 70). The third category is the 
behavioral or psychomotor characteristics 
describing various styles of learner 
behaviors and correspond to the learner’s 
cognitive or emotional states. The behavioral 
characteristics include preventive behaviors, 
inconsistency, comprehensive control, 
seeking help and feedback, attempting to 
perform activities (such as exercises and 
scores), concentration, learning ability, and 
cognitive ability (8, 70).

In a research conducted by Normandy 
et al., the combined category has been 
added to the Bloom category. This research 
suggests that in some research in this field, 
several individual characteristics are used in 
different categories to increase the reliability 
and performance of the adaptive learning 
environment for assisting the learner. 
Therefore, combined categories can be 
added to the Bloom category by combining 
characteristics from cognitive, emotional, and 
behavioral categories. In this research, some of 
the influential characteristics, such as verbal, 
writing, spatial abilities, goal orientation, and 
self-efficacy, are not considered (70). 

In another study by Brusilovsky and 
Milan, approaches and learning modeling 
techniques in adaptive learning systems have 
been investigated. In this research, individual 
characteristics including user knowledge, 
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interests, goals and tasks, background and 
personal characteristics of cognitive styles and 
individual learning styles are considered, and 
cognitive and personality abilities are briefly 
illustrated. Other personal characteristics in 
learning environments, such as motivation, 
metacognitive abilities, and emotional factors 
that play an essential role in learner modeling, 
are not regarded (71).

 In Thalmann’ study, 30 adaptive learning 
systems have been analyzed. The importance 
degree of user attributes impacts and system 
characteristics have been examined with 
13 various criteria including knowledge 
structure, user history, user requests, prior 
knowledge, knowledge domain, presentation 
preferences, preferences for media types, 
learning style, language, device requirements, 
bandwidth, location, and user status. In this 
study, the abilities and cognitive style of 
learners are not considered (72).

In Grimley and Riding’s study, personal 
characteristics of cognitive style, gender, 
working memory, knowledge, and anxiety 
are considered highly effective in adaptive 
learning systems. Generally, the potential 
interaction between the variables in learning 
performance is discussed in case variables 
are essential. Moreover, their role during the 
learning process has been examined (73).

In a conducted research by Chrysafiadi 
and Virvou, the level of knowledge, skills, 
learning preferences and learning styles, 
mistakes, and misconceptions, motivation, 
emotional characteristics, cognitive aspects 
such as memory, attention, problem-solving, 
decision making, experience, analysis, critical 
thinking and communication skills and 
metacognitive aspects such as self-regulation, 
self-explanation, self-evaluation, and self-
management are regarded as individual 
characteristics (14).

Nakic et al. introduced 22 individual 
learner characteristics by evaluating 98 
articles; however, no precise categorization 
of individual learner characteristics has been 
presented in this study. These characteristics 
include age, gender, perceptual speed, 
processing speed, capacity and working 

memory, reasoning ability, verbal ability, 
spatial ability, cognitive ability, metacognitive 
ability, psychological skills, personality, 
anxiety, emotions, cognitive style, learning 
style, experience, background knowledge, 
motivation, expectations, preference, and 
interactions (10).

In a conducted research by Ghorbani and 
Montazer, different categories for the learner 
characteristics have been presented, which 
includes three categories of “cognitive,” 
“motivational,” and “emotional.” In this 
study, it has been pointed out that each learner 
has a set of these characteristics. Cognitive 
features include individual characteristics of 
learning style, cognitive style, memory, IQ, 
and personality. The category of motivational 
features encompasses individual motivational 
characteristics, goal orientation, self-efficacy, 
and knowledge. Finally, the category of 
emotional features includes the learner’s 
emotional states, such as failure, confusion, 
happiness, and assurance. In this research, the 
behavioral and metacognitive characteristics 
of users have not been regarded (21). 

In this paper, all characteristics of learners 
that have been previously utilized in other 
studies for personalization of the system 
based on learners’ attributes have been 
investigated. This study aims to present a 
comprehensive classification that considers 
the previous classifications and includes 
more characteristics and presents some 
categories that have not been regarded thus 
far. In this regard, a novel classification 
of learner characteristics was proposed 
considering 22 effective features. The 
proposed categorization for the learning 
domain consists of five primary categories 
of cognitive characteristics, motivational 
characteristics, behavioral characteristics, 
emotional characteristics, and metacognitive 
characteristics. Moreover, some other 
characteristics are shaped through a 
combination of other characteristics. A set 
of these features represents each learner. In 
this paper, each of the categories, along with 
the related characteristics, was introduced. 
The corresponding studies for each of 
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the characteristics were examined. The 
research results can be considered a clear 
and accurate road map for future research 
on learner modeling in e-learning systems. 
Future studies can utilize this categorization 
to select influential characteristics in the 
personalized system design process through 
this aspect. For example, by choosing two 
different learners’ traits like personality 
and motivation, it can be assumed that two 
different cognitive and metacognitive aspects 
are considered in student modeling.

 To summarize, influential personal 
characteristics in the personalization process 
are considered in the present paper. The most 
common methods for identifying features in 
different learning domains were introduced. 
Moreover, a new categorization of learner 
characteristics based on the results has been 
provided for user modeling. The classification 
of students’ traits can be beneficial for learning 
environment designers since they can choose 
the learner’s most efficient characteristics to 
efficiently personalize the system . 

This research’s limitation includes limited 
access to the researchers that published their 
studies in languages other than English or 
Persian.
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